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The space P K of partial maps with compact domains (identified with their graphs) forms a
subspace of the hyperspace of nonempty compact subsets of a product space endowed with
the Vietoris topology. Various completeness properties of P K , including Čech-completeness,
sieve completeness, strong Choquetness, and (hereditary) Baireness, are investigated. Some
new results on the hyperspace K (X) of compact subsets of a Hausdorff X with the Vietoris
topology are obtained; in particular, it is shown that there is a strongly Choquet X , with
1st category K (X).
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1. Introduction

Given the Hausdorff spaces X, Y , and a continuous function f : X → Y , its graph Γ ( f ) is a closed subset of X × Y ;
moreover, if X is compact, then so is Γ ( f ). As a consequence, it is natural to view the space C(X, Y ) of continuous
functions f : X → Y as a subspace of the hyperspace CL(X × Y ) of nonempty closed (resp. compact) subsets of X × Y , which
in turn allows one to endow C(X, Y ) with various hyperspace topologies inherited from CL(X × Y ). This is a well-known
approach leading to new topologies on C(X, Y ) [36,5], as well as allowing to study classical function space topologies in
a new light [39,24].

More generally, one can consider the space of all partial maps f ∈ C(B, Y ) for all nonempty closed (resp. compact) B ⊆ X
as sitting in CL(X × Y ) endowed with the so-called Vietoris topology, as was first done by Zaremba [42], and Kuratowski
[27,28] (see also [20,26]). Other topologies have been also studied in this context [17,18,11,12]; in particular, the generalized
compact-open topology on partial maps received some recent attention [4,23,24]. Note that spaces of partial maps arise nat-
urally in differential equations [38,10], mathematical economics [4], or in dynamic programming models [30,40]; moreover,
since the classical function space topologies (e.g. pointwise, compact-open, uniform, resp.) are defined for functions with
the same domain, appropriate partial map space topologies are essential for useful applications in these areas.
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It is the purpose of this paper to investigate various completeness properties of partial maps with compact domains
endowed with the Vietoris topology, and explore the relationship to various hyperspace and function space topologies.
Proving completeness properties for the compact-open topology on C(X, Y ) frequently calls for some extension theorem
(Tietze, Dugundji), which then requires restrictions on Y (cf. [35]); we will show how spaces of partial maps can be used to
obtain these results for a considerably more general Y .

In what follows, let X and Y be Hausdorff spaces. If X is Tychonoff, c X will denote a fixed Hausdorff compactification
of X . We will write Bc , int B , and B for the complement, interior, and closure, respectively, of B ⊆ X . Denote by CL(X) the
family of nonempty closed subsets of X , and by K (X) the family of nonempty compact subsets of X . If K ∈ K (X × Y ), write
K (x) = {y ∈ Y : (x, y) ∈ K }. The symbol πX ,πY will denote the projection map from X × Y onto X, Y , respectively. For any
B ∈ K (X), and a topological space Y , C(B, Y ) will stand for the space of continuous functions from B to Y . Denote by

P K = P K (X, Y ) =
⋃{

C(B, Y ): B ∈ K (X)
}

the family of all partial maps with compact domains. We will identify a partial map f with its graph Γ ( f ) ∈ K (X × Y ). The
Vietoris topology τV on K (X) has subbase elements of the form

U− = {
A ∈ K (X): A ∩ U �= ∅}

and U+ = {
A ∈ K (X): A ⊆ U

}
where ∅ �= U ⊆ X is open, so a base for τV consists of

〈U0, . . . , Un〉 =
( ⋃

i�n

Ui

)+
∩

⋂
i�n

U−
i

where Ui ⊆ X are open. We will use the same notation τV for the Vietoris topology on K (X), as well as on K (X × Y ), and
any of its subspaces. We will consider two topologies on C(X, Y ), the uniform topology τU , and the compact-open topology
τCO [19,35].

Proposition 1.1. X, Y and K (X) embed as closed subspaces in (P K (X, Y ), τV ).

Proposition 1.2.

(i) P K (X, Y ) ⊆ K (X × Y ); moreover, P K (X, Y ) ⊆ K (c X × cY ), if X, Y are Tychonoff.
(ii) If X is dense-in-itself, then P K (X, Y ) is dense in (K (X × Y ), τV ).

(iii) If X is regular and Y has a Gδ-diagonal, then P K (X, Y ) is a Gδ-subset of (K (X × Y ), τV ).

Proof. (i) and (ii) are easy to see, only (iii) needs some explanation: let {Gn}n be a sequence of open sets in Y × Y such
that the diagonal � = {(y, y): y ∈ Y } = ⋂

n∈ω Gn . We will show that the set

Gn = {
K ∈ K (X × Y ): ∀x ∈ πX (K ) ∃ open V x with K (x) × K (x) ⊆ V x × V x ⊆ Gn

}
is τV -open in K (X × Y ) for every n ∈ ω: take some K ∈ Gn and x ∈ πX (K ). Then there is a Y -open V x such that
K (x) × K (x) ⊆ V x × V x ⊆ Gn . We can find an open neighborhood Ux of x such that K (z) ⊆ V x for every z ∈ Ux (other-
wise, there is a net {zλ} converging to x, and some yλ ∈ K (zλ) \ V x for each λ, hence, (zλ, yλ) ∈ K has a cluster point
(x, y) ∈ K , such that y /∈ V x contradicting y ∈ K (x) ⊆ V x).

Regularity of X implies that there is an open neighborhood Hx of x such that Hx ⊆ Hx ⊆ Ux . Compactness of πX (K )

implies that there is a k ∈ ω with πX (K ) ⊆ ⋃
i�k Hi = H , where for each i � k, Hi = Hxi for some xi ∈ πX (K ). We will also

write Ui for Uxi , and V i for V xi . For every i � k put

Li = [
Ui × V i ∪ (X \ Hi) × Y

]+ ∩ (H × Y )+.

Then
⋂

i�k Li is a τV -open neighborhood of K such that
⋂

i�k Li ⊆ Gn: indeed, let L ∈ ⋂
i�k Li , and x ∈ πX (L). Then x ∈ H ,

hence x ∈ Hi for some i � k; moreover, L(x) ⊆ V i , and V i × V i ⊆ Gn , so L ∈ Gn .
Clearly, P K (X, Y ) ⊆ ⋂

n Gn , since if K ∈ P K (X, Y ), then K (x) is a singleton; on the other side, if K ∈ ⋂
n Gn , then for each

x ∈ πX (K ), K (x) × K (x) ⊆ ⋂
n Gn = �, so K (x) is a singleton. This means that K is a compact graph of a function f with

compact domain πX (K ), which implies that f is continuous, whence K = Γ ( f ) ∈ P K (X, Y ). �
Corollary 1.3. Let X be regular, Y have a Gδ-diagonal, and P be a topological property that is closed- and Gδ-hereditary. Consider the
following properties:

(i) (K (X × Y ), τV ) has property P ;
(ii) (P K (X, Y ), τV ) has property P ;

(iii) X, Y have property P .

Then (i) ⇒ (ii) ⇒ (iii).
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We will now explore some properties of the function

η : (K (X), τV
) × (

C(X, Y ), τU
) → (

P K (X, Y ), τV
)

defined via η(B, f ) = Γ ( f �B).

Proposition 1.4. Let X, Y be Tychonoff spaces. Then η is continuous.

Proof. Let U and V be uniformities on X and Y , respectively, and (B, f ) ∈ K (X) × C(X, Y ). Take an open set O in X × Y
such that Γ ( f �B) ∈ O −; we can assume that O = O 1 × O 2, where O 1 is X-open, and O 2 is Y -open. If (x, f (x)) ∈ O 1 × O 2,
x ∈ B , and V ∈ V is such that V ◦ V [ f (x)] ⊆ O 2, then continuity of f at x implies that there is an X-open U with x ∈ U ,
U ⊆ O 1 and for every z ∈ U , f (z) ∈ V [ f (x)]. It is easy to verify that the set

H = U− × {
g ∈ C(X, Y ): g(v) ∈ V

[
f (v)

]
for every v ∈ X

}
is a neighborhood of (B, f ), and Γ (h �C ) ∈ O − for each (C,h) ∈ H; thus, η−1(O −) is open.

Now let G ⊆ X × Y be open such that Γ ( f �B) ∈ G+ . Let U ∈ U and V ∈ V be such that U × V [Γ ( f �B)] ⊆ G , further,
V 1 ∈ V be symmetric with V 1 ◦ V 1 ⊆ V . Using uniform continuity of f �B and compactness of B , we can find a symmetric
U1 ∈ U , U1 ⊆ U so that whenever x ∈ B and (z, x) ∈ U1, ( f (z), f (x)) ∈ V 1. If H ∈ U is open symmetric such that H ⊆ U1,
then for every

(C,h) ∈ H(B)+ × {
g ∈ C(X, Y ):

(
g(z), f (z)

) ∈ V 1 for every z ∈ X
}

we have η(C,h) ∈ G+; thus, η−1(G+) is open. �
Recall, that a map ψ : X → Y is feebly open [22], provided intψ(U ) �= ∅ for each nonempty open U ⊆ X .

Proposition 1.5. Let either X be paracompact, and Y locally convex, completely metrizable, or X be normal, and Y = R. Then η is
feebly open.

Proof. Let d be a compatible metric on Y , and take a basic open set in (K (X), τV ) × (C(X, Y ), τU ):

H = 〈U0, . . . , Un〉 × {
g ∈ C(X, Y ): d

(
g(x), f (x)

)
< ε, ∀x ∈ X

}
,

where ∅ �= Ui ⊆ X are open (i � n), ε > 0 and f ∈ C(X, Y ). For every i � n, take xi ∈ Ui and, without loss of generality,
assume that the xi ’s are distinct; then Γ ( f �{x0,...,xn}) ∈ η(H). For each i � n, let Hi be a convex neighborhood of f (xi) such
that

Hi ⊆
{

y ∈ Y : d
(

f (xi), y
)
<

ε

4

}
,

and by continuity of f , let V i be an open neighborhood of xi such that V i ⊆ Ui , f (z) ∈ Hi for every z ∈ V i , and the family
{V i: i � n} is pairwise disjoint. The set

L =
⋂
i�n

(V i × Hi)
− ∩

( ⋃
i�n

V i × Hi

)+

is a τV -neighborhood of Γ ( f �{x0,...,xn}) such that L ∩ P K ⊆ η(H): indeed, let g ∈ L ∩ P K , and B = dom g . Then B ∈
〈U0, . . . , Un〉 and, using the appropriate extension theorem (an application of the Michael Selection Theorem [6, p. 92,
Corollary 7.5.], and Tietze’s Theorem, respectively), we can extend g to g∗ ∈ C(X, Y ) so that d(g∗(x), f (x)) < ε; thus
g = η(B, g∗) ∈ η(H). �
2. Completeness properties of K (X)

From now on, c X is a fixed Hausdorff compactification of a Tychonoff space X . Recall, that X is Čech-complete [19], if X
is Gδ in its compactification c X . We will say that X is a p-space [3,21], provided there is a feathering for X , i.e. there is
a sequence {Vm}m of open covers of X in c X such that

⋂
m st(x, Vm) ⊆ X for all x ∈ X , where st(x, Vm) = ⋃{V ∈ Vm: x ∈ V }.

Analogously, we can define cp-spaces, if we require
⋂

m(
⋃{V ∈ Vm: K ∩ V �= ∅}) ⊆ X for all K ∈ K (X). A cp-space is clearly

a p-space; on the other hand, a paracompact p-space, or a Čech-complete space is a cp-space. A space is sieve complete
provided it is the continuous open image of a Čech-complete space [41], so Čech-complete spaces are sieve complete; on
the other hand, paracompact sieve complete spaces are Čech-complete [32]. A space X is a Baire space, provided countable
collections of dense open subsets of X have a dense intersection [22,25]; equivalently, if nonempty open subsets of X are
of 2nd category (i.e. not of 1st category, which would be a countable union of nowhere dense sets); X is called hereditarily
Baire if every nonempty closed subspace is Baire.
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Theorem 2.1. The following are equivalent:

(i) (K (X), τV ) is completely metrizable (Čech-complete, sieve complete, resp.);
(ii) X is completely metrizable (Čech-complete, sieve complete, resp.).

Proof. Since all these properties are closed-hereditary, (i) ⇒ (ii) follows as X sits in K (X) as a closed subset.
(ii) ⇒ (i). See [29] for complete metrizability, [43], or [13, Theorem 4], for Čech-completeness. As for sieve completeness,

let f : Z → X be an open continuous mapping from a Čech-complete space Z onto X . Define F : (K (Z), τV ) → (K (X), τV ) as
F (K ) = f (K ) for each K ∈ K (X). Then F is continuous and, since f is compact-covering [19, Problem 5.5.11(e)], F is onto.

Also, F is an open mapping, since if U = 〈U0, . . . , Un〉 ∈ τV (Z), then F (U) = 〈 f (U0), . . . , f (Un)〉 = V. Indeed, clearly
F (U) ⊂ V, on the other hand, if K ∈ V, we can find some xi ∈ K ∩ f (Ui) and a corresponding zi ∈ Ui with f (zi) = xi for
each i � n. Now, U = ⋃

i�n Ui ⊆ Z is Čech-complete and f �U is a continuous open mapping of U into
⋃

i�n f (Ui) and
hence compact-covering. It means that for some Z -compact L0 ⊆ U , f (L0) = K and therefore L = L0 ∪ {z0, . . . , zn} ∈ U and
F (L) = K . �
Proposition 2.2. If X is a cp-space, then (K (X), τV ) is a p-space.

Proof. See [13, Theorem 3]. �
In the strong Choquet game [25] two players, α and β , take turns in choosing objects in the topological space X with an

open base B: β starts by picking (x0, V 0) from

E = E (X, B) = {
(x, V ) ∈ X × B: x ∈ V

}
,

and α responds by U0 ∈ B with x0 ∈ U0 ⊆ V 0. The next choice of β is some couple (x1, V 1) ∈ E with V 1 ⊆ U0 and again α
picks U1 with x1 ∈ U1 ⊆ V 1 etc. Player α wins the run (x0, V 0), U0, . . . , (xn, Vn), Un, . . . provided

⋂
n Un = ⋂

n Vn �= ∅, oth-
erwise β wins. A winning strategy for α (resp. β) is a function σ : E <ω → B (resp. σ : B<ω → E ) such that α (resp. β) wins
every run of the game compatible with σ , i.e. such that Un = σ((x0, V 0), . . . , (xn, Vn)) (resp. (xn+1, Vn+1) = σ(U0, . . . , Un))
for all n. The space X is called a strong Choquet space [25], if α has a winning strategy in Ch(X). Čech complete spaces are
strongly Choquet [37], and so are sieve complete spaces; moreover, a metrizable space is strongly Choquet iff it is com-
pletely metrizable [25]. We will say that Ch(X) is β-favorable, if β has a winning strategy in Ch(X). It is known that if X
is a 1st countable regular space, and Ch(X) is β-favorable, then X contains a closed copy of the rationals, and so X is not
hereditarily Baire; moreover, a Moore space is hereditarily Baire iff Ch(X) is not β-favorable [14].

A regular space X is a Moore space [21], if there is a sequence {Vn: n ∈ ω} of open covers of X such that for each x ∈ X ,
{st(x, Vn): n ∈ ω} is a base of neighborhoods at x.

Theorem 2.3.

(i) Let X, Y be regular. If Ch(K (X × Y )) is β-favorable, so is Ch(K (X) × K (Y )).
(ii) Let X, Y be Moore spaces. If (K (X), τV ) × (K (Y ), τV ) is hereditarily Baire, then so is (K (X × Y ), τV ).

Proof. (i) Denote S = K (X ×Y ) and T = K (X)× K (Y ). Let σS be a winning strategy for β in Ch(S). We will define a winning
strategy σT for β in Ch(T ): if (B S , B S) is β ’s choice in Ch(S) (at some step), where B S = 〈U0 × V 0, . . . , Uk × Vk〉, let

BT = (
πX (B S),πY (B S)

)
, BT = 〈U0, . . . , Uk〉 × 〈V 0, . . . , Vk〉,

and (BT , BT ) be β ’s corresponding step in Ch(T ). If α’s response in Ch(T ) is AT = 〈W ′
0, . . . , W ′

m〉 × 〈Z ′
0, . . . , Z ′

n〉, then
BT ∈ AT , so

πX (B S) ⊆
⋃

i

W ′
i ⊆

⋃
p

U p and ∀p ∃i with W ′
i ⊆ U p,

πY (B S) ⊆
⋃

j

Z ′
j ⊆

⋃
p

V p and ∀p ∃ j with Z ′
j ⊆ V p .

Considering only the intersections W ′
i ∩ U p and Z ′

j ∩ V p that hit πX (B S) and πY (B S ), respectively, we can assume that

∀i ∃p with W ′
i ⊆ U p and ∀ j ∃p with Z ′

j ⊆ V p .

If a ∈ πX (B S ), denote Ua = ⋂{W ′
i : a ∈ W ′

i }, and if b ∈ πY (B S ), denote Vb = ⋂{Z ′
j: b ∈ Z ′

j}. By regularity, for each

(a,b) ∈ B S we can find open U ′
a , and V ′

b containing a,b, respectively, such that U ′
a × V ′

b ⊆ Ua × Vb . By compactness of B S ,
there is a finite subcover of {U ′

a × V ′ : (a,b) ∈ B S } covering B S ; enumerate this subcover as {W0 × Z0, . . . , Wr × Zr}. We can
b
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also assure that for all p � k there is s � r with W s × Zs ⊆ U p × V p , so if we denote A S = 〈W0 × Z0, . . . , Wr × Zr〉, then
B S ∈ A S ⊆ B S , and A S can, and will, be α’s next step in Ch(S).

Now, if (B(0)
T , B(0)

T ), A(0)
T , . . . , (B(k)

T , B(k)
T ), A(k)

T , . . . is a run in Ch(T ) compatible with σT , then (B(0)
S , B(0)

S ), A(0)
S , . . . ,

(B(k)
S , B(k)

S ), A(k)
S , . . . is a run in Ch(S) compatible with σS . Moreover, if there exists some ∅ �= (K1, K2) ∈ ⋂

k∈ω A(k)
T then, by

compactness of K1 × K2, we have

∅ �= K1 × K2 ∩
⋂
k∈ω

( ⋃
s�rk

W s × Zs

)
∈

⋂
k∈ω

A(k)
S ,

which is a contradiction.
(ii) By a theorem of Mizokami [33], K (X), K (Y ), K (X × Y ), and hence, K (X) × K (Y ) is a Moore space, so if K (X) × K (Y )

is hereditarily Baire, then Ch(K (X) × K (Y )) is not β-favorable, and neither is Ch(K (X × Y )) by (1); thus, K (X × Y ) is
hereditarily Baire. �

The Banach–Mazur game BM(X) is played analogously to the strong Choquet game, except, both α and β choose elements
of B. It is known that β has a winning strategy in BM(X) iff X is not a Baire space [25]. A space is called weakly α-favorable
iff α has a winning strategy in BM(X) [22]. A space is quasi-regular [34] iff each nonempty open set contains the closure of
a nonempty open set. We will use that Baire spaces are invariant of continuous, feebly open maps [22, Proposition 4.4(ii),
and Theorem 4.7].

Theorem 2.4. Let X, Y be quasi-regular. The following are equivalent:

(i) (K (X), τV ) × (K (Y ), τV ) is Baire;
(ii) (K (X × Y ), τV ) is Baire.

Proof. (i) ⇒ (ii). Denote S = K (X × Y ) and T = K (X) × K (Y ). If S is not Baire, then β has a winning strategy σS in
BM(S). We will define a winning strategy σT for β in BM(T ): if B S = 〈U0 × V 0, . . . , Uk × Vk〉 is β ’s choice in BM(S)

(at some step), let BT = 〈U0, . . . , Uk〉 × 〈V 0, . . . , Vk〉 be β ’s corresponding step in BM(T ). Let α’s response in BM(T ) be
AT = 〈W ′

0, . . . , W ′
m〉 × 〈Z ′

0, . . . , Z ′
n〉. Then

⋃
i

W ′
i ⊆

⋃
p

U p and ∀p ∃i with W ′
i ⊆ U p,

⋃
j

Z ′
j ⊆

⋃
p

V p and ∀p ∃ j with Z ′
j ⊆ V p .

Considering the intersections W ′
i ∩ U p and Z ′

j ∩ V p , if necessary, we can assume that

∀i ∃p with W ′
i ⊆ U p and ∀ j ∃p with Z ′

j ⊆ V p .

For each i, j find nonempty open W ′′
i ⊆ W ′

i , and Z ′′
j ⊆ Z ′

j such that W ′′
i × Z ′′

j ⊆ W ′
i × Z ′

j . Enumerate the collection
{W ′′

i × Z ′′
j : W ′′

i × Z ′′
j ⊆ U p × V p for some p} as {W0 × Z0, . . . , Wr × Zr}, and let α’s next step in BM(S) be A S =

〈W0 × Z0, . . . , Wr × Zr〉.
Now, let B(0)

T , A(0)
T , . . . , B(k)

T , A(k)
T , . . . be a run in BM(T ) compatible with σT , and assume that there exists some

(K1, K2) ∈ ⋂
k∈ω A(k)

T . Then B(0)
S , A(0)

S , . . . , B(k)
S , A(k)

S , . . . is a run in BM(S) compatible with σS , moreover, by compactness
of K1 × K2,

∅ �= K1 × K2 ∩
⋂
k∈ω

( ⋃
s�rk

W s × Zs

)
∈

⋂
k∈ω

A(k)
S ,

which is a contradiction.
(ii) ⇒ (i). Define the mapping ψ : K (X × Y ) → K (X) × K (Y ) via

ψ(C) = (
πX (C),πY (C)

)
,

which is clearly onto. Then ψ is continuous: let K ∈ K (X × Y ), and A = 〈U0, . . . , Un〉 × 〈V 0, . . . , Vm〉 be an open neighbor-
hood of ψ(K ). Enumerate {Ui × V j: Ui × V j ∩ K �= ∅} as {W0, . . . , Wk}. Then K ∈ 〈W0, . . . , Wk〉 ⊂ ψ−1(A).

Also, ψ is feebly open: let B = 〈U0 × V 0, . . . , Un × Vn〉, and using quasi-regularity of X, Y , choose U ′
i ⊆ X , V ′

i ⊆ Y open

with U ′
i × V ′

i ⊆ Ui × V i for each i � n. If A = 〈U ′
0, . . . , U ′

n〉 × 〈V ′
0, . . . , V ′

n〉, then A ⊆ ψ(B). �
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Proposition 2.5. If (K (X), τV ) is strongly Choquet, then so is X .

Proof. Let σK be a winning strategy for α in Ch(K (X)). Let β ’s initial choice in Ch(X) be (x0, V 0), and ({x0}, V +
0 )

be β ’s initial choice in Ch(K (X)). If U0 = σK ({x0}, V +
0 ) = 〈A0, . . . , An〉, then x0 ∈ ⋂

i�n Ai ⊆ V 0, and we can choose
U0 = σ(x0, V 0) = ⋂

i�n A0 to be α’s response in Ch(X). Assuming that Uk−1 = σ((x0, V 0), . . . , (xk−1, Vk−1)) has been de-
fined for k � 1, and (xk, Vk) is β ’s next step in Ch(X), let

Uk = σK
(({x0}, V +

0

)
, . . . ,

({xk}, V +
k

)) = 〈B0, . . . , Bm〉.
Then xk ∈ ⋂

i�m Bi ⊆ Vk , and we can choose Uk = σ((x0, V 0), . . . , (xk, Vk)) = ⋂
i�m Bi to be α’s next step in Ch(X). Let

(x0, V 0), U0, . . . , (xn, Vn), Un, . . . be a run of Ch(X) compatible with σ . Then ({x0}, V +
0 ), U0, . . . , ({xn}, V +

n ), Un, . . . is a run
of Ch(K (X)) compatible with σK , so there is some ∅ �= K ∈ ⋂

n∈ω V +
n ; thus, for any x ∈ K we have x ∈ ⋂

n∈ω Vn , and α wins
in Ch(X). �

To show that the above implication cannot be reversed we first need

Proposition 2.6. Let X be a dense-in-itself space where the compact subsets are finite, and Y be arbitrary. Then (K (X × Y ), τV ) is of
1st category.

Proof. For n � 1, consider Fn = {A ∈ K (X × Y ): |πX (A)| � n}. Then K (X × Y ) = ⋃
n Fn , and we just need to show that each

Fn is nowhere dense in (K (X × Y ), τV ): let A ∈ K (X × Y ) with πX (A) = {p0, . . . , pm}. Then A = ⋃
k�m{pk} × Ck for some

Ck ∈ K (Y ). If U = 〈U0, . . . , Ur〉 is a neighborhood of A, we can make sure that each Ui is a product V i × W i of open sets so
that if pk ∈ V i ∩ V j then V i = V j , and if pk ∈ V i, pl ∈ V j for different k, l, then V i ∩ V j = ∅. If m + 1 > n then U ∩ Fn = ∅,
otherwise, take pairwise disjoint nonempty X-open subsets G0, . . . , Gn−m of V 0, and observe that 〈G0 × W0, . . . , Gn−m × W0,

U1, . . . , Ur〉 is a subset of U disjoint from Fn . �
McCoy [34] showed that if X is a Bernstein set (i.e. X ⊆ R such that both X and R \ X meets every dense-in-itself

Gδ subset of R), then K (X) is of 1st category. It is known that X is hereditarily Baire, but not weakly α-favorable
[22, Theorem 2.6], so the following is a new observation:

Example 2.7. There is a strongly Choquet X such that (K (X), τV ) is of 1st category.

Proof. Let X = R, with the topology having

B = {I \ C : I open interval, C ⊆ X countable}
as its base. Then X is clearly dense-in-itself and T2. Further, if X has an infinite compact subset A with {ai: i < ω} ⊆ A,
then the open cover {{a j: j � i}c: i � 1} of A has no finite subcover, a contradiction. By Proposition 2.6, K (X) is of 1st
category (just take Y to be a singleton).

Also, X is strongly Choquet: indeed, let {C(i): i < ω} be the enumeration of a countable C ⊆ R. Inductively define a
winning strategy σ for α in Ch(X); let (x0, B0) be β ’s first step, where x0 ∈ B0 = I0 \ C0 ∈ B. Choose an open interval
J0 with x0 ∈ J0 ⊆ J0 ⊆ I0 \ {C0(0)} that has at most half the length of I0, and put σ(x0, B0) = J0 \ C0. Assume that
σ((x0, B0), . . . , (xn−1, Bn−1)) has been defined for some n � 1, and xk ∈ Bk = Ik \ Ck ∈ B for k � n − 1. If (xn, Bn) is β ’s
next step, where xn ∈ Bn = In \ Cn ∈ B, choose an open interval Jn with xn ∈ Jn ⊆ Jn ⊆ In \ {Ck(i): k, i � n}, which has at
most half the length of In , and put σ((x0, B0), . . . , (xn, Bn)) = Jn \ Cn . Then there is a unique x ∈ ⋂

n In , which will avoid all
the Cn ’s; thus, x ∈ ⋂

n Bn . �
3. Completeness properties of PK

An old result of Kuratowski [27] can be extended as follows:

Theorem 3.1. The following are equivalent:

(i) (P K (X, Y ), τV ) is completely metrizable;
(ii) X, Y are completely metrizable.

Proof. If X, Y are completely metrizable, then so is X × Y and K (X × Y ), respectively (Theorem 2.1). The rest follows from
Corollary 1.3. �
Theorem 3.2. If Y has a Gδ-diagonal, the following are equivalent:

(i) (P K (X, Y ), τV ) is Čech-complete;
(ii) X, Y are Čech-complete.
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Proof. If X, Y are Čech-complete, then so is X × Y and K (X × Y ), respectively (Theorem 2.1). The rest follows from Corol-
lary 1.3. �
Theorem 3.3. If X is regular and Y has a Gδ-diagonal, the following are equivalent:

(i) (P K (X, Y ), τV ) is sieve complete;
(ii) X, Y are sieve complete.

Proof. If X, Y are sieve complete, so is X × Y and K (X × Y ), respectively (Theorem 2.1). The remaining follows from
Corollary 1.3 observing that sieve completeness is closed- and Gδ-hereditary [31, Remark 8.8]. �
Theorem 3.4. Let X, Y be cp-spaces, and Y have a Gδ-diagonal. Then (P K (X, Y ), τV ) is a p-space.

Proof. Since X × Y is a cp-space, if X, Y are, it follows by Proposition 2.2 that K (X × Y ) is a p-space. Finally, by Proposi-
tion 1.2, P K (X, Y ) is a p-space, since being a p-space is a Gδ-hereditary property. �
Theorem 3.5. Let X be a dense-in-itself space where the compact subsets are finite, and Y be arbitrary. Then (P K (X, Y ), τV ) is of 1st
category.

Proof. By Propositions 2.6 and 1.2, P K (X, Y ) ⊆ K (X × Y ) is of 1st category. �
Corollary 3.6. There is a strongly Choquet space X, so that (P K (X, Y ), τV ) is of 1st category for any Y .

Proof. See Example 2.7. �
Theorem 3.7. Let X, Y be Moore spaces, and Y a Čech-complete space. Then the following are equivalent:

(i) (P K (X, Y ), τV ) is hereditarily Baire;
(ii) (K (X), τV ) is hereditarily Baire.

Proof. (ii) ⇒ (i). K (X), K (Y ) are Moore spaces [33], and K (Y ) is Čech-complete by Theorem 2.1, so K (X) × K (Y ) is hered-
itarily Baire by [7, Corollary 2.2]. This in turn implies hereditary Baireness of K (X × Y ) by Theorem 2.3(2). Then P K (X, Y )

is hereditarily Baire by Corollary 1.3.
(i) ⇒ (ii). K (X) sits in P K (X, Y ) as a closed subspace. �
Note that the above theorem is of a different character than the previous theorems, since hereditary Baireness of X

is only necessary for hereditary Baireness of (P K (X, Y ), τV ). Indeed, if we take the hereditarily Baire (separable) metric
space X of [2], then K (X) is not hereditarily Baire [9, Remark 4.3]; for another example, see [34]. Our next theorem gives
a sufficient condition for hereditary Baireness of (P K (X, Y ), τV ). Recall, that X is consonant [15,16], provided the upper
Kuratowski topology and the cocompact topology coincide on the hyperspace of closed subsets of X ; Čech-complete spaces
are consonant [16], but there are separable metrizable hereditarily Baire non-consonant spaces [1].

Corollary 3.8. Let X, Y be Moore spaces, the separable closed subsets of X be consonant and Y be a Čech-complete space. Then
(P K (X, Y ), τV ) is hereditarily Baire.

Proof. See [9, Corollary 4.7], and our Theorem 3.7. �
The mapping ψ : X → Y is feebly continuous, provided int(ψ−1(U )) �= ∅ for each open U ⊆ Y with ψ−1(U ) �= ∅; further,

ψ is δ-open iff ψ(A) is somewhere dense for each somewhere dense A ⊆ X . Baire spaces are invariant of feebly continuous,
δ-open maps [22, Theorem 4.7].

Theorem 3.9. Let X be a regular, dense-in-itself space. Let Y be a quasi-regular space with a Gδ-diagonal such that (K (Y ), τV ) is
weakly α-favorable. The following are equivalent:

(i) (P K (X, Y ), τV ) is a Baire space;
(ii) (K (X), τV ) is a Baire space.

Proof. (ii) ⇒ (i). K (X)× K (Y ) is a Baire space by [22, Theorem 5.1], and so is K (X × Y ) by Theorem 2.4. By Proposition 1.2,
P K (X, Y ) is a dense Gδ-subset of K (X × Y ), and hence a Baire space.



1446 L. Holá, L. Zsilinszky / Topology and its Applications 157 (2010) 1439–1447
(i) ⇒ (ii). Define ψ : P K (X, Y ) → K (X) via ψ( f ) = dom f . Given a K (X)-basic open set 〈U0, . . . , Un〉, we have
〈U0 × Y , . . . , Un × Y 〉 ∩ P K (X, Y ) ⊆ ψ−1(〈U0, . . . , Un〉), so ψ is feebly continuous. Furthermore, if A is dense in U =
〈U0 × V 0, . . . , Un × Vn〉 ∩ P K (X, Y ), then ψ(A) is dense in 〈U0, . . . , Un〉: indeed, let 〈W0, . . . , Wm〉 ⊆ 〈U0, . . . , Un〉. Then⋃

j W j ⊆ ⋃
i U i and ∀i ∃ j: W j ⊆ Ui . For all i � n, denote Ui = {W j ∩ Ui: W j ∩ Ui �= ∅}, and define

U ′ =
⋂
i�n

⋂
Z∈Ui

(Z × V i)
− ∩

( ⋃
i�n

⋃
Z∈Ui

Z × V i

)+
.

Then U ′ ⊆ U , so there is f ∈ A ∩ U ′ , hence, ψ( f ) ∈ 〈W0, . . . , Wm〉; thus, ψ is δ-open. �
Theorem 3.10. (P K (X, Y ), τV ) is a Baire space in each of the following cases:

(i) X is a dense-in-itself, Tychonoff, 1st countable, consonant space, and Y is a quasi-regular sieve complete with a Gδ-diagonal;
(ii) X is a normal, consonant, 1st countable space, and Y = R;

(iii) X is a paracompact, consonant, 1st countable space, and Y is locally convex, completely metrizable.

Proof. (i) By [8, Proposition 5], K (X) is a Baire space, and by Theorem 2.1, K (Y ) is sieve complete and hence weakly
α-favorable. Then P K (X, Y ) is a Baire space by the previous theorem.

(ii) and (iii). By [8, Proposition 5], K (X) is a Baire space, and since Y is completely metrizable, (C(X, Y ), τU ) is completely
metrizable; thus, (K (X), τV )× (C(X, Y ), τU ) is a Baire space [22, Theorem 5.1]. It also follows from Propositions 1.4 and 1.5,
that η : (K (X), τV )×(C(X, Y ), τU ) → (P K (X, Y ), τV ) is continuous and feebly open, and hence P K (X, Y ) is a Baire space. �
4. Completeness properties of C(X, Y )

The following theorem was also proved in [24] using the so-called generalized compact-open topology τC defined on the
space

P = P(X, Y ) =
⋃{

C(B, Y ): B ∈ CL(X)
};

we give an alternative proof using our partial map space P K (X, Y ):

Theorem 4.1. Let X be a hemicompact k-space, and Y be Čech-complete (sieve complete, cp-space, resp.) with a Gδ-diagonal.
Then (C(X, Y ), τCO) is Čech-complete (sieve complete, p-space, resp.).

Proof. Let {Kn: n ∈ ω} be a cofinal family in K (X), and Z = ⊕
n Kn the topological sum of the Kn ’s. Observe that τV

and τCO coincide on C(Kn, Y ), moreover, (C(Kn, Y ), τV ) is closed in (P K (Kn, Y ), τV ) for all n. It follows by Theorem 3.2
(resp. 3.3, 3.4) that (C(Kn, Y ), τCO) is Čech-complete (sieve complete, p-space, resp.) for each n; thus,

∏
n∈ω(C(Kn, Y ), τCO)

is Čech-complete (sieve complete, p-space, resp.), and so is (C(Z , Y ), τCO), as it is homeomorphic to
∏

n∈ω(C(Kn, Y ), τCO)

[35, Corollary 2.4.7.]. Finally, notice that Z is hemicompact, locally compact and, since X is a k-space, the natural mapping
ψ : Z → X is compact-covering and quotient. Consequently, the map ψ∗ : (C(X, Y ), τCO) → (C(Z , Y ), τCO), defined via

ψ∗( f ) = f ◦ ψ, for all f ∈ C(X, Y ),

is a closed embedding [35, Corollary 2.2.8(b), and Theorem 2.2.10]. �
In the final results we will explain why it is possible to obtain the above results for the compact-open topology

on C(X, Y ) through (P K , τV ), and (P , τC ), respectively; the reason is that they coincide if X is compact. The advantage
of our approach is that it is considerably less complicated to prove the completeness properties for (P K , τV ). Recall [23,24],
that τC has subbase elements of the form{

f ∈ P(X, Y ): U ∩ dom f �= ∅}
, and

{
f ∈ P(X, Y ): f (K ∩ dom f ) ⊆ I

}
,

where U is open in X , K ∈ K (X) and I is an open (possibly empty) subset of Y .

Proposition 4.2. Let X, Y be topological spaces. Then τC ⊂ τV on P K (X, Y ).

Theorem 4.3. Let X, Y be Tychonoff spaces. The following are equivalent:

(i) X is compact;
(ii) τC = τV on P K (X, Y ).
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Proof. (i) ⇒ (ii). By Proposition 1.2(1), (P K (X, Y ), τV ) is a subspace of (K (X × cY ), τV ). It is well known that the Vietoris
topology τV coincides with the Fell topology on K (X × cY ), since X × cY is compact [5]. By [24, Proposition 2.2], the
generalized-compact open topology τC coincides with the Fell topology induced from (CL(X ×cY ) (= K (X ×cY )) to P (X, Y )

(= P K (X, Y )), since X is compact.
(ii) ⇒ (i). Suppose X is not compact. Let {xσ } be a net in X without a cluster point in X . Choose x ∈ X , y ∈ Y , for every

σ put Cσ = {x, xσ }, and define fσ : Cσ → Y to be identically equal to y. If f : {x} → Y is defined as f (x) = y, then { fσ }
τC -converges to f , but fails to τV -converge to it. �
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